

Development Standards & Practices Used
● Agile Project Management

● Client - Server model

● Cloud Development

● CI/CD

Summary of Requirements

● Build learning platform that allows users to search and enroll in courses

● Courses should have various video lessons and track a users progress into

a course

● Courses can have quizzes and will save a users score on a quiz

● Videos may be linked to YouTube or directly uploaded as a mp4

● Course marketplace allows users to search courses

● Course marketplace gives course recommendation based on previous

taken courses

● Course creator studio where users can create their own courses

Applicable Courses from Iowa State University Curriculum
● COMS 227

● COMS 228

● COMS 309

● COMS 319

● COMS 339

● COMS 363

● SE 329

New Skills/Knowledge acquired that was not taught in courses
● Cloud Development

● CI/CD

● Material UI

● Creating and deploying live applications from complete scratch

● Image / video processing and storage

Table of Contents

1 Team, Problem Statement, Requirements, and Engineering Standards 10
1.1 INITIAL 10
1.2 REQUIRED SKILL SETS FOR YOUR PROJECT 10
1.3 SKILL SETS COVERED BY THE TEAM 10
1.4 Project Management Style Adopted by the team 10
1.5 Initial Project Management Roles 11
1.6 Problem Statement 11
1.7 Requirements & Constraints 11
1.8 Engineering Standards 13
1.9 Intended Users and Uses 13

2. Project Plan 14
2.1 Task Decomposition 14
2.2 Project Management/Tracking Procedures 18
2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 18
2.4 Project Timeline/Schedule 21
2.5 Risks And Risk Management/Mitigation 22
2.6 Personnel Effort Requirements 26
2.7 Other Resource Requirements 26

3 Design 27
3.1 Design Content 27
3.2 Design Complexity 27
3.3 Modern Engineering Tools 28
3.4 Design Context 28
3.5 Prior Work/Solutions 29
3.6 Design Decisions 30
3.7 Proposed Design 31

3.7.1 Design 0 (Initial Design) 31
Application Design 31
Client Design 34

3.7.2 Design 1 (Design Iteration) 36
Application Design 36
Client Design 37

3.8 Technology Considerations 38
3.9 Design Analysis 38

4 Testing 39
4.1 Unit Testing 39
4.2 Interface Testing 40
4.3 Integration Testing 40
4.4 System Testing 43

4.5 Regression Testing 43
4.6 Acceptance Testing 44
4.7 Security Testing 45
4.8 Results 46

5 Implementation 47
6 Professionalism 48

6.1 Areas of Responsibility 48
6.2 Project Specific Professional Responsibility Areas 49
6.3 Most Applicable Professional Responsibility Area 50

7 Closing Material 51
7.1 Discussion 51
7.2 Conclusion 51
7.4 Appendices 51

7.4.1 Team Contract 51

List of figures/tables/symbols/definitions (This should be the similar to the
project plan)

1 Team, Problem Statement, Requirements, and Engineering
Standards

1.1 TEAM MEMBERS

Sam DeFrancisco, Jennifer Robles, Nicholas Erickson, Brayton Rude, Naga Vempati, Nikhil
Kuricheti

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT

● Frontend Development
○ Frontend framework and component system to build a user interface
○ UI/UX design

● Backend Development
○ REST API needed to handle user interactions from the web client
○ Database to store user and course information

● Cloud Development
○ AWS services to host the server, client, database, and image storage

● Continuous Integration / Continuous Delivery
○ Create pipeline to build, test, and deploy new versions of our system

● Version Control
○ Use Git for code repository and version control

● Software Architecture
○ Design client server application and an interface to communicate to each other

● Project Management
○ Communicate with client to determine project requirements
○ Plan all pieces of work and set milestones and time estimates for each
○ Delegate work items to team members in proper order

1.3 SKILL SETS COVERED BY THE TEAM

Sam: Full Stack Development

Jennifer: Frontend Development

Nicholas: Full Stack Development

Brayton: Full Stack Development

Naga: Frontend Development

Nikhil: Frontend Development

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Our team will use an agile scrum methodology. We will have bi-weekly standup meetings and 2
week sprints. We will use GitHub as our tool to track issues and progress.

1.5 INITIAL PROJECT MANAGEMENT ROLES

We’ve taken a community project management role. During our design phase we have shared the
responsibility of delegating tasks and planning work. This is subject to change if needed.

1.6 PROBLEM STATEMENT

Our goal is to create an online learning platform that meets the growing need for a comprehensive
educational system by not only delivering quality content but also seamlessly integrating innovative
study tools. We will be providing students with a complete learning experience, incorporating
comprehension quizzes, personalized flashcards, and sophisticated recommendation algorithms.
We aim to benefit a diverse student population, offering convenience and efficiency. Additionally,
our platform will be designed to benefit educators by offering the ability to create courses. With
features like an intelligent recommendation algorithm for courses and an integrated flashcard
creation system, our technical approaches are geared towards ensuring a smooth user experience
for both students and educators.

1.7 REQUIREMENTS & CONSTRAINTS

Functional Requirements

● Course System
○ Contains various video lessons and quizzes
○ Contains local flashcard set
○ Tracks user progress

● Lesson System
○ Displays video player with lesson video
○ Lesson can have a quiz

● Flashcard System
○ User can create flashcard sets and notes for a course

● Course Marketplace
○ Search courses by name and genre
○ Courses are recommended to student based on previously enrolled courses

● Creator Studio
○ Allow educators to create courses
○ Upload videos directly or link to YouTube for lessons
○ Allow creating quizzes for a lesson

● User
○ Accounts
○ Enroll in courses
○ Save user course progress and flashcard sets

Resource Requirements

● AWS
○ EC2 servers
○ AWS S3

○ AWS RDS (MySQL)
○ AWS Neptune (Graph DB)

● Github
○ Repository (version control)
○ Github Actions (deployment)

Qualitative Aesthetics Requirements

● Aesthetics should be simple and calming as to not distract students

Economic/market Requirements

● Freely accessible to students and educators
● Low and manageable maintenance costs

Environmental Requirements

● No environmental requirements for the nature of this software project

UI Requirements

● Common theme and styling across website
● Errors are handled and appropriately displayed back to the user
● Simple and uncluttered UI with minimal actions per page
● MUI components
● Navigation bar
● Interface works for both web and mobile

Performance Requirements

● Quick page and video load times
● Responsive user interface interactions
● Elastic scaling to handle variable user activity

Legal requirements

● Ensure that credit is provided for video content
● Disclaimers regarding content validity

Maintainability Requirements

● Clearly documented code along with a HOW TO CONTRIBUTE document
● Images demonstrating software architecture, data schemas, etc.
● Expected functionality and requirements should be able to be derived from tests

Testing Requirements

● Tests should cover all main functionalities of the application
● Expected functionality and requirements should be able to be derived from tests

1.8 ENGINEERING STANDARDS

IEEE 829 - Software Test Documentation
In our project, the IEEE 829 standard would apply to our project by how we document the testing
process. Our LMS needs testing to ensure its usability and functionality. Following this standard
would make sure our testing is well-documented and include test plans and reports of the results
and any issues.

IEEE 830 - Software Requirements Specifications
This standard focuses on defining software requirements in a standardized manner. The
requirements would include features, functionality, and user interface specifications. We would
outline what the system does such as user registration, the ability for users to upload their own
courses and/or quizzes/notes, and content management. Following this standard will help in
creating a clear documented set of requirements that will help serve as a foundation for the
development process of our project.

IEEE 1074 - Software Development Life Cycle
We would be following a structured process for developing our LMS. This will include phases like
project planning, analyzing requirements, designing the system, coding, testing, and deployment.
Having a defined software development cycle is important for managing our timeline.

IEEE 2001 - Web Site Engineering, Web Site Management and Web Site Life Cycle
This standard is relevant to our online learning platform because it provides guidance on designing,
developing, and maintaining web-based applications. The standard also addresses security aspects
and best practices related to internet applications. These are crucial to ensuring the integrity of our
LMS.

1.9 INTENDED USERS AND USES

There are two main groups of users: students and educators.

Students who are seeking to learn educational content are the main user type. Students will be
provided with quality content that engages their comprehension. Users will be able to create study
notes and flashcards for a course and keep track of their overall progress. Additionally, students will
be recommended other courses in the marketplace to continue their learning.

Educators are the secondary user type. Educators can provide their educational content in a more
productive platform with our application. They can take either existing course series from youtube
or directly upload their content to our system and create an organization course from it. Educators
can build quizzes for individual lessons. With our platform, educators can be sure that their
students are better prepared to learn from their content.

2. Project Plan

2.1 TASK DECOMPOSITION

Task Dependency Graph

Individual Tasks

Task #1 [client]: Create base react project
- Desc: Initialize project and folder structure
- Dependencies: none

Task #2 [data]: Create MySQL database
- Desc: Initialize MySQL database creation and deployment
- Dependencies: none

Task #3 [server]: Create base spring project
- Desc: Initialize spring project and folder structure. Connect to MySQL database
- Dependencies: 2

Task #4 [data]: Create AWS S3 bucket for video storage
- Desc: Create a public S3 bucket to store lesson videos in
- Dependencies: none

Task #5 [deploy]: Create pipeline to build and deploy project to AWS
- Desc: Create a pipeline in Github Actions that will package the React and Spring Boot

project and deploy to AWS on every new merge into master
- Dependencies: 1, 3

Task #6 [server]: Create user model and endpoints
- Desc: Create user table. Build getUser, createUser, and loginUser endpoints
- Dependencies: 3

Task #7 [client]: Build home page and user creation / login
- Desc: Create website home page. Create screens where users can create accounts and log

in.
- Dependencies: 6

Task #8 [server]: Create course schema course endpoints
- Desc: Create course schema that has basic information such as creator, title, and lesson

count. Create getCourse and getCourses endpoints.
- Dependencies: 3

Task #9 [server]: Create video schema and get video endpoint
- Desc: Create video schema that takes in name, course, lessonNumber, and video link.

Link will be either a youtube link or AWS S3 bucket link. Create getVideos endpoint that returns all
videos of a course.

- Dependencies: 8

Task #10 [server]: Create video upload endpoints
- Desc: Create upload video endpoints. One should create video entry based on youtube

link. The second should take in mp4, upload to S3 bucket, and then create video entry.
- Dependencies: 9

Task #11 [client]: Create basic course viewer
- Desc: Create course viewer screens that display a course and its lessons. Each lesson

shows a video. You can navigate between each lesson and the respective video will display.
- Dependencies: 7, 9

Task #12 [server]: Create quiz schema and endpoints
- Desc: Create quiz schema. Quiz should have a way to store questions and answers.

Quizzes should belong to a lesson. Create getQuiz and scoreQuiz endpoints.
- Dependencies: 10

Task #13 [client]: Create quiz system
- Desc: Create a quiz system where quiz objects from getQuiz are converted into questions

and answers. Track user answers and score the quiz at the end (scoreQuiz). Display score to user.
- Dependencies: 12

Task #14 [server]: Create user progress tracker schema and endpoints
- Desc: Create user progress tracking schema. Stores userId, course, lastLessonNumber,

quizScores. Create getUserProgress and sendUserProgress endpoints
- Dependencies: 12

Task #15 [client]: Create course marketplace
- Desc: Create a shopping-like view that displays courses. Should be able to search and

filter by courses. Can click into a course and choose to enroll in it from this screen. Additionally,
show course recommendations based on previously taken courses in this view.

- Dependencies: 11

Task #16 [server]: Create / update endpoints to support course creator studio
- Desc: Create and update any required endpoints to support the build course creator

studio such as add permissions or adding additional required parameters to createCourse, etc.
- Dependencies: 14

Task #17 [client]: Build course creator studio
- Desc: Build course creator studio that allows users to make their own courses. They

should be allowed to add or remove lessons. They will be allowed to upload a video or reference a
youtube video for each lesson. They may create their own quizzes and answers. After a course is
created, it should display in the course marketplace.

- Dependencies: 16

Task #18 [data / server]: Create graph database and support recommendations
- Desc: Create graph database to store course types. Update getCourses endpoint to

support returning recommended courses based on courses a user has already taken.
- Dependencies: 11

Task #19 [server]: Update course marketplace to display recommended courses
- Desc: Add additional tab / header to marketplace to show a recommended courses

section. Courses retrieved from asking for recommended courses from getCourses endpoint.
- Dependencies: 15, 18

Task #20 [server]: Retrieve/Create endpoints for flashcard sets related to courses
- Desc: Create any endpoints relevant for creating flashcard sets and pairing them with

their course, as well as creating endpoints to retrieve flashcards by course
- Dependencies: 8

Task #21 [client]: Give user ability to create flashcard sets
- Desc:Within a course a user will be able to create flashcards or other similar tools to add

to the course they are currently taking. Other users will be able to view these sets to use for their
own studying.

- Dependencies: 11, 20

2.2 PROJECT MANAGEMENT/TRACKING PROCEDURES

Our team will use Agile. With our project being client focused, following an agile methodology will
allow us to make continuous changes and improvements. Agile also includes integration testing,
which we will be needing to continuously do to ensure a stable LMS. We will be using Agile’s
iterative approach when developing our site.

We will use GitHub Boards to track issues and progress. Discord will be used for communication.

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Milestone 1 Basic Setup of Project
Tasks included: 1, 2, 3, 4, 5

In this milestone we aim to get the basic needs for our project setup. This includes getting a base
react project started that is able to communicate with a dummy endpoint on our server side. To do
this we will also need to get our AWS infrastructure setup to be available for requests. This will need
our spring backend to be created to be hosted by AWS. From there we plan on getting a deployment
pipeline setup for ease of future development.

Completion:

1. Have a static website that can hit an endpoint from our server successfully.
2. Pushing will redeploy

Milestone 2 Introduction of Users
Tasks included: 6, 7

This will be the start to our actual website. Starting with user tables and endpoints to be used for
account creation/deletion/retrieval. We’ve also included the login system for the client in this
milestone as it will use these user functionalities created on the backend.

Completion:

1. User can login from client side

Milestone 3 Videos/Courses
Tasks included: 8, 9, 10, 11

For this milestone we will work on introducing the main focus of the project which is the course
system. This will require creating schemas for courses as well endpoints to retrieve them. We plan
on storing videos in s3 buckets so we will need to connect courses to the videos/links to them.
Creators will need to be able to upload to our s3 buckets so this will require endpoints for that as
well.

Completion:

1. Can upload video from client side
2. Can retrieve video from client side
3. Clicking a course will retrieve relevant videos

Milestone 4 Quiz System
Tasks included: 12, 13

Users/Creators will have the ability to create quizzes as study tools. This will require both a client
side building tool, as well as the relevant endpoints to be able to save them to the database.

Completion:

1. Client side has tools available to create a quiz
2. Quiz is saved to database and linked with relevant course
3. Client side retrieves relevant quizzes when requested

Milestone 5 Tracking User Progress
Tasks included: 14

This milestone is small but could become larger in the future. We want to have the ability to track
how far into a course a user has made it. We may go down to the seconds level within the video or
just the right lesson number. This will require frequent updating of their progress from the client
side to the backend. So we will need the necessary endpoints set up to allow for this.

Completion:

1. On refresh/redirect a user will be taken to the video they left off on within the course.

Milestone 6 Study Tools
Tasks included: 20, 21

Something we want to add to make our project more learning friendly compared to Coursera or
Udemy is the ability to add flashcard sets to courses. We will need to prototype what type of tools
we want to have available. This involves adding the ability to create flashcards on the client and
appropriate endpoints on the server.

Completion:

1. Client side can make a simple study set and upload it to the course
2. When a course is clicked the relevant study sets are displayed and can be clicked to be

revealed

Milestone 7 Creator Studio
Tasks included: 16, 17

One of our main sources for content will come from creators of the platform. We want to create a
course creator kind of system where they can upload their content, quizzes, and study sets. This will
once again require us to create relevant endpoints on server side, as well as the user interfaces to
complete these actions on the client side.

Completion:

1. Client side can create a new course
a. Client can upload a lesson (video)
b. Client can upload a quiz

2. Server side
a. When new course is created relevant information is stored to the database
b. Lessons are uploaded to s3 buckets and linked to the relevant courses

Milestone 8 Course Marketplace
Tasks included: 15, 18, 19

One of the big parts of this project will be finding relevant courses. We plan on creating a sort of
marketplace to find these courses. This will require being able to retrieve all courses, or filtering
courses by content. It will also need the user interface to be created to display the courses

Completion:

1. Client side can view all available courses
2. Client side can filter courses by topic

2.4 PROJECT TIMELINE/SCHEDULE

The following gantt chart starts on Tuesday January 16th, the first day of classes of the 2024 Spring
Semester, and ends on Friday May 3rd, the final day of regular classes of the 2024 Spring Semester.
Each column consists of one week of work, which totals to 15 weeks of work when excluding the
week of Spring Break. The main structure of the chart follows the milestones derived in section 2.3
and attaches each milestone’s corresponding tasks from section 2.1 within each milestone’s
timeframe.

Link to Spreadsheet for a Better View

https://docs.google.com/spreadsheets/d/19iMbH-XDWH-50RAXQLL5GXMBJOKbTNSSXdrk0CPEs9w/edit?usp=sharing

2.5 RISKS AND RISK MANAGEMENT/MITIGATION

Task 1-4 Initial Setup

Risk:

1. Trouble with setting up developer environment installed on each developer’s machine

Solution

1. Meet with other members to troubleshoot environment

Task 5 Create pipeline to build and deploy project to AWS:

Risk:

1. Might be slight learning curve of deploying to AWS rather than something like GitLab that
we have used in the past

2. Pipeline might need to change in the future

Solution:

1. Take necessary steps to learn about deployment to AWS before starting. Contact instructors
and mentors for additional assistance.

2. Being prepared to further develop the pipeline as the project progresses. We can’t be
married to our V1 of the pipeline

Task #6 [server]: Create user model and endpoints

Risk:

1. One risk that could arise is security concerns
a. too much information being returned to specific user
b. Bad encryption leaking information
c. Permission issues

Solution

1. Security
a. Ensure that only relevant information is being returned in requests
b. Use heavy testing to ensure encryption/decryption is working properly
c. Ensure that users are given only the amount of access/permissions that are

required. Can be proven through testing

Task #7 [client]: Build home page and user creation / login

Risk

1. User password security

Solution

1. Ensure we hide passwords as they are typed in such as *****

Task #8 [server]: Create course schema course endpoints

Risk

1. As development progresses our original schema becomes dated
a. Could cause issues with created endpoints

Solution

1. Try to create a flexible schema from the start that includes as much information as possible
a. Have well documented methods that explain exactly what it does, so when we need

to update them it is easier

Task #9 [server]: Create video schema and get video endpoint

Risk

1. Inconsistencies between when we are linking a youtube video / aws s3 bucket link

Solution

1. Clearly identify which service is being used so the client side can handle embedding the
videos correctly

Task #10 [server]: Create video upload endpoints
Risk

1. Handling different video formats when they are being uploaded

Solution

1. Possibly restrict video formats for creators? If not there is probably some sort of module we
can use to differentiate the formats/normalize them.

Task #11 [client]: Create basic course viewer
Risk

1. Different browsers may handle embedded videos differently which could cause issues

Solution

1. We could either have a message that recognizes problem browsers and recommends a
different one or we could try to handle based on browser how content is displayed

Task #12 & #13 [server]: Create quiz schema and endpoints && Create quiz system

Risk

1. Quizzes could have errors such as wrong answers
2. If a quiz includes a short answer, validating the answer could be difficult

Solution

1. Adding a user feedback system that can notify the creator
2. Require creator to provide a solution to short answer that will be displayed after user

submits theirs for comparison

Task #14 [server]: Create user progress tracker schema and endpoints

Risk

1. If we try to track progress by the second we could run into issues with that
a. If users system were to crash we would fail to send an update to our system
b. Will need to come up with solutions for frequency of updates being sent to our

system

Solution

1. Progress tracking
a. Restore from the most recent progress status from our system
b. Send updates on pauses, redirects, tab closes etc.

Task #15 [client]: Create course marketplace

Risk

1. Filters return irrelevant results

Solution

1. Continue to manually refine the algorithm that returns results
a. Add a button that hides unwanted results, and then sends the feedback to our

system

Task #16 [server] && Task #17: Create / update endpoints to support course creator studio &&
Build course creator studio

1. Creator tries to upload things that aren’t supported
2. Creator tries to upload malicious content

Solution

1. Restrict file types for uploads
2. Have feedback system that allows for users to flag bad content, possibly a review process on

our side to deny/accept

Task #18 [data / server] and Task #19 [server]: Create graph database and support
recommendations, and Update course marketplace to display recommended courses
Risk

1. Recommendation algorithm fails, and no recommendations are able to be displayed.

Solution

1. System will default to a set of predetermined courses to display on the marketplace in
place of the recommendations

Task #20 [server] and Task #21[client]: Retrieve/Create endpoints for flashcard sets related to
courses and Give user ability to create flashcard sets
Risk

1. User creates a flash card set that is not related to the course.
2. User content regulation could be a problem, since the feature allows for user created

content to be public.
3. A user could attempt to spam the site by making large quantities of flash card sets.

Solution

1. User’s can flag unrelated sets.
2. Have a system that flags unacceptable key words. When a set has been flagged, the user

cannot make their set public until it has been reviewed.
3. Set a limit to the number of sets a user can create in a set window of time.

2.6 PERSONNEL EFFORT REQUIREMENTS

2.7 OTHER RESOURCE REQUIREMENTS

We will require various AWS services for hosting our web application and CD actions.

3 Design

3.1 DESIGN CONTENT

The design content for our project involves a combination of UI elements such as wireframes and
mockups that will help us visualize the layout and structure of our platform as well as UX elements
that will map out user flows and interactions. Since the frontend of our website will be programmed
in React, we will need to define the hierarchy of React components that will help to make the
website’s design consistent. Overall, the website will be user-friendly and focused on making the
user’s interaction with our application as smooth as possible. In terms of the backend design
considerations, the application will be designed using a database scheme such as MySQL to store
user data, course information, videos, quizzes, and user progress. The design will ensure smooth
integration between the React frontend and Spring Boot backend, including handling data retrieval
and updates. Additionally, the algorithm that recommends courses will be designed to suggest
courses to users based on their previous course history and selected interests among other data
analytics. The design will be implemented to give users the ability to report inappropriate content
and provide feedback.

3.2 Design Complexity

As opposed to plain Javascript, using React for frontend development means that our application is
built on a component-based architecture, which allows us to break down the user interface into
reusable components. This approach enhances modularity and each component can have its state,
props, and lifecycle methods, making the project structure more intricate. Managing the state of
different components is crucial in ensuring they reflect the correct data. Also using AWS S3
integration allows for scalability because the application can seamlessly handle the storage and
retrieval of large volumes of data. Using a graph database for course recommendations utilizes the
engineering principle of efficiency because a graph database can model data in a way that
represents complex relationships between data points, which is crucial for generating accurate and
efficient recommendations. We will be keeping with modern software development practices by
creating a CI/CD pipeline. Our pipeline will build our project, run tests, and deploy the last version
to an EC2 instance on merges to master.

Our application involves multiple challenging requirements ranging from features like a
recommendation algorithm to integrated video storage, and user-generated content. These
advanced features are in line with the industry's demand for interactive and personalized learning
platforms. Another example is the course creator studio, which allows users to upload lessons,
videos, quizzes, and study sets. This feature expands the platform's capabilities and complexity and
requires sophisticated content management and user permissions systems. Tracking user progress is
also a technically demanding task with significant implications for the user experience. It involves
continually recording the user's progress and timestamp, storing it efficiently, and ensuring that
when a user returns to a course, they can pick up from where they left off without delay. Achieving
this relies on data structures and synchronization mechanisms to ensure that progress data remains
accurate and up to date. All of these requirements match industry standards that top learning
platforms like Khan Academy or Coursera use.

3.3 Modern Engineering Tools

Several modern engineering tools play essential roles in the design and development process of our
application. React is used as a front-end framework, providing an efficient way to build dynamic
user interfaces and manage complex client-side logic. Spring Boot is used as the backend framework
which helps in facilitating data management and user authentication. AWS integration provides
many cloud-based services for us to deploy our application. AWS assists in our server hosting, data
storage, and continuous delivery. GitHub is also a crucial tool in our project’s foundation. GitHub
actions allows us to create the CI portion of our pipeline while GitHub repositories allow us to
manage version control.

3.4 DESIGN CONTEXT

The communities that our learning platform is designed for and affects include students, educators
and content creators, and educational institutions. The primary users of the platform are students.
It caters to their educational needs by providing a centralized platform for accessing educational
resources and user-driven study tools. Educators and content creators form another community.
They can use the platform to share their expertise by creating courses. Educational institutions can
also be impacted because they may choose to utilize the platform as part of their teaching
curriculum.The societal needs addressed are access to quality education, customized learning, and
efficient learning. We provide a one-stop solution for students to access educational content and
user-driven study tools. Promoting customized learning caters to individual learning needs. Our
platform helps the learning process by organizing content based on topics, tracking user progress,
and offering study tools like flashcards and quizzes, making learning more efficient and effective.

Considerations related in each area:

Public health, safety, and welfare

Our project positively affects the public well-being by providing students with quality
educational resources, potentially improving their learning outcomes.

Global, cultural, and social

Our platform should respect cultural and ethical values, ensuring that the content provided
doesn’t violate ethical standards.

Environmental

As a software product, the project has minimal direct environmental impact. However, we
need to ensure that infrastructure management follows sustainable practices to minimize
energy usage.

Economic

As a team, we need to take into account the cost of maintaining servers and cloud
infrastructure. We also need to take into consideration keeping our platform affordable for
users to ensure accessibility.

3.5 Prior Work/Solutions

The field of online education has had growth over the years, especially with the rise of digital
platforms and educational technology. There are various existing online learning platforms that aim
to enhance the learning experience by providing a wide range of educational resources and
interactive tools. Some of the prominent learning platforms include Coursera, Khan Academy,
Udemy, and Quizlet. Coursera offers a wide range of courses, including those from top universities
and institutions. It provides video lectures, quizzes, and assignments. Khan Academy focuses on
K-12 education and provides video lessons, practice exercises, and personalized learning
dashboards. Udemy is a platform that allows educators to create and sell courses on various topics.
It offers a marketplace for both free and paid courses. Quizlet provides a variety of study resources
and tools. These include flashcards, quizzes, and practice tests.

Pros/Cons of our target solution:

Pros

● User-driven study tools: allows students to customize their learning resources
● Personalization: personalized recommendations based on content can help students find

the most relevant resources.
● Content organization: can make it easier for students to navigate and find what they need
● Integration of learning resources: integrates educational content and study tools in one

place, reducing the need to search multiple sources; combines the interactive study tools
from Quizlet with the course offerings from Coursera, offering students a well-rounded
learning experience.

Cons

● Competition: there are existing established platforms like Coursera, Udemy, Quizlet, etc.
● Content quality: ensuring the quality of user-generated content and study tools is crucial
● Marketing: attracting users and educators to a new platform is challenging when there are

already established learning platforms
● Monetization: charging users could limit accessibility, but offering it for free can be

challenging for sustaining the project financially.
● Content diversity: If we offer a wide range of subjects/topics, it may require significant

content generation and quality control

3.6 DESIGN DECISIONS

1. User interface design

We need to make clear decisions on layout, navigation, and color schemes to
ensure a positive user experience. The layout of pages, menus, and navigation bars
should make it easy for users to find and access different content. Having a
consistent uniform style/design throughout the platform will create a professional
cohesive look.

2. REST API interface design

Our REST API interface determines how the client will communicate with the
server. Ensuring our requests and data models follow a similar pattern is crucial to
ensure ease of development and maintainability. Additionally, we need to consider
keeping our interface abstract as tasks down the road will slightly alter existing
data models and endpoints.

3. Software Architecture

We had to make a decision on how to deploy our application. While a requirement
was to deploy the platform to the cloud, there were no specifics on the
implementation. We decided to use AWS services as they are the most popular
provider and will have the largest information base. Additionally, we chose to use
GitHub actions for the pipeline to keep everything local and confined as possible.
Due to our small team and experience, we wanted to keep the amount of
applications we use to a minimum.

4. Content management

We will determine how the content will be organized and tagged based on topics
and subjects. This involves building a recommendation system that uses algorithms
to suggest relevant content to users based on their preferences and learning
history. This also involves quality control to ensure that content is appropriate and
meets certain standards. Lastly, this involves the decision on monetization and
whether we will charge users to use certain features of our platform.

5. Data security/privacy

We will make decisions related to data security and privacy. This includes
encryption methods for user data and content, and user authentication and
authorization. Deciding on user data retention policies will ensure that users’
personal and learning data are stored and managed securely.

3.7 PROPOSED DESIGN

3.7.1 Design 0 (Initial Design)

Application Design

Application Architecture Overview (Figure 3)

Client/Server/Database More Detailed (Figure 4)

Architecture Overview Description (Figure 3)

This figure shows a basic overview of the tech stack we have chosen to work with. For the client side
we are using ReactJS which will interface with our server built with the Java framework Spring Boot.
For storage and database purposes we will be utilizing AWS services S3 buckets, RDS (relational
database service), & Neptune.

Client/Server/Database More Detailed Description (Figure 4)

This diagram gives a brief model of each important system in our application.

Client

Main Pages/Components highlighted in red, branches represent subcomponents

● Login Page: Basic user interface that allows users to signup/login for our website
● Home Page:

○ Allows users to see current courses they are enrolled in
○ See recommendations for new courses/content
○ Navigate to other pages

● Account Page:
○ Change password
○ Change avatar
○ View learning badges/certificates
○ Change settings

● Course Viewer: Screen users will see when clicked into a course
○ Video Player: window displaying current lesson video
○ View available flash card/study tool sets
○ View available quizzes created for course
○ Choose lesson in course to view
○ Progress Tracking

● Course Marketplace
○ Browse new courses
○ Filter results
○ Search for courses
○ View recommendations

● Course Studio: What creators will use to publish new courses
○ Upload videos (lessons)
○ Create quizzes
○ Create study tools
○ Edit course description and other details

Server

Each box represents a different functionality of our backend. API’s work with different database
services shown by the branching arrows

● Video API’s: CRUD operations for the lessons in our system which are represented by video.
We plan on storing video when needed in S3 buckets.

● User API’s: CRUD operations for users. Users will be stored into our relational database and
used throughout the application.

● Progress Tracking API: CRUD operations. We plan on allowing users to continue where
they left off these api’s will provide functionality to frequently update by users progress in
their current courses

● Quiz API’s: CRUD operations. Users/Creators will make quizzes for specific courses, these
will be stored into tables within our relational database.

● FlashCard API’s: CRUD operations. Users/Creators will also be able to create study tools
similar to quizlet to hook to courses, the metadata for these cards will be stored in the
relational database.

● Studio API’s. CRUD operations for the creation of new courses.
● Recommendations API’s. CRUD operations. Will interface with the graph database as well

as the client to introduce new content to users

Database/Storage

● S3 Buckets: The main purpose of the s3 buckets will be to store video needed for courses
● RDS: Relational database that will store most of the metadata to our site.
● Neptune: Graph database service that will provide our recommendations to users

Application Database Schema (Figure 5)

Application Deployment Process (Figure 6)

Figure 6 above shows the application deployment process. The red numbers label the steps in order.
A brief summary of what goes on is as follows:

1. Developer adds and merges code to the repository.
2. The React client and Spring server will be built into one jar
3. The built artifact (jar file) will be uploaded to a S3 bucket
4. On successful Github Actions pipeline finish, a signal will be sent to CodeDeploy
5. CodeDeploy will enter an EC2 instance and run bash scripts to stop the current app
6. CodeDeploy then does a start script that downloads the new artifact from S3 and starts it

Client Design

When users initially navigate to our page, they will be taken to the login screen, and from here,
users will be able to log in as either a student or instructor. Once logged in, users will land on the
home page, which will act as the main hub for our users. The home page will act as a bridge to all
the main aspects of our application. There will be navigation buttons to guide the users to other
main pages within the application, like the user account page, the course marketplace page, or the
creator studio. Throughout the application, we are implementing a recommendation system that
will suggest various courses that users will find interesting or relevant to their current studies. The
home page and course marketplace pages will make use of the recommendation system. There will
be a Course Viewer page where users can see their course progress, watch course content, and select

study tools like quizzes and flashcards to use for practice. Users will be able to create their own
courses with Creator Studio. They’ll also be able to search for and find new courses to enroll in
through the Course Marketplace.

A few mockups of the pages are provided below:

● Courser Marketplace
● Course Viewer
● Account

3.7.2 Design 1 (Design Iteration)

Application Design

During our first design we were not confident on video storage and graph databases. While our
research had pointed us to use these technologies, we weren’t certain on how to implement them.
After doing further research and experiments, we have come up with plans and have created visuals
to demonstrate our data schemas.

Figure 8 shows our AWS S3 storage schema. S3 works very similar to a folder on your computer
however it lives on AWS. The benefits of this include very cheap storage as well as being practically
infinitely scalable. The largest benefit is our ability to serve content from AWS S3 straight to our
website. Once we get videos to S3 we can then play those videos on our website without having to
manage the video data ourselves.

Figure 9 shows our AWS Neptune graph database schema. The circles are nodes and the arrows are
edges. The main purpose is to track which courses different users have enrolled, favorited, and
completed. Due to the nature of graphs, we can very quickly parse through course enrollment data
to find related courses for a given user.

Client Design

In our second iteration we reworked our layout of the client. There was discussion about how we
really wanted the course layout to look as well as how the flashcards and quizzes played in.
Additionally, we plan on using Material UI components so we reworked the mocks to use these
instead.

Figure 10 shows mocks of the course viewer and the course marketplace - the two main screens.

Take note of the new MUI style components and more modern UI style. The design has large and
simple 1-use buttons to ensure ease of use. This design gives a much smoother and relaxing feel
with the objective being on the courses and lessons rather than the interface itself.

3.8 TECHNOLOGY CONSIDERATIONS

Deployment: We chose to use a combination of Github Actions and AWS services for deployment
for ease of developer use. While using cloud technology and AWS is an additional discussion, the
deployment process is worth considering. From researching and experience, using CodeDeploy is a
nice way to run scripts on our EC2 instance. We could’ve used Github Actions with Terraform or
other tools. However, from a developer perspective you can write and edit these scripts from the
repo and these will automatically be updated in CodeDeploy. We won’t have to edit the CodeDeploy
but rather only the bash scripts it runs. This keeps our code and points of contact all local to one
main spot. A reason for using Github Actions for the CI part of the pipeline rather than using AWS’s
entire suite is ease of access as well. Logging into AWS can be a hassle especially just to check on CI
stages. Keeping that in Github is convenient for us to debug and see when our newest merge might
be live. We will be issue tracking and doing code reviews in Github so it’s nice if that’s the only
website we ever have to pull up during development (versus having Jira, AWS, Jenkins, Github, etc.
open).

3.9 DESIGN ANALYSIS

Our current final design covers all basic requirements at this point.

The application architecture and deployment model are set in stone. We are following a very
standard client server model. Once our CI/CD pipeline is set up and we have our initial project
deployed, we should no longer need to be worried about any infrastructure / architecture items.

We have created our data schemas to the best of our abilities. The S3 and graph database are
unlikely to change very much if at all during implementation as those are straightforward and very
single-use. The SQL schema was created to the best of our knowledge. During implementation
there exists a possibility that we need to add extra properties to models. However the main data
types and their relationships should remain the same. With data abstraction that comes packaged
with Spring, changing the data storage hosts (e.g. using GCS instead of AWS for MySQL db) should
be of no issue should anything like that be necessary.

We have mocked our main screens on the client and are content with their ability to serve all of our
core requirements. Students can find and enroll in courses in the marketplace. Students can go
through lessons in the course with the option to take quizzes and write down notes. Minor styling
changes may occur during development however the current layout is to stay.

One thing that could be iterated on is the course structure. Currently our structure is very rigid in
that lessons must be in a progressive order and quizzes must exist only on a lesson. We could open
up the design to have lessons be more open to choose as you go as well as have standalone quizzes.

4 Testing

4.1 UNIT TESTING

We will be writing unit tests for both the client and server of our codebase. The goal is to ensure
that core units give the correct outputs based on what we input.

Client
Our tool of choice will be Jest and React Testing Library.

We will write unit tests on main reusable React components. This includes the video player, quiz
taker, course viewer, navigation bar, marketplace items, flashcards, and our high level page shell. All
of these components will be duplicated many times throughout the application and thus will have
an interface of some sort. Other individual pages and views (such as login) will be tested through
integration testing.

Our unit tests will supply different data into the various units. We will programmatically ensure the
UI is displayed correctly. We will call various functions at the component level and verify their
output to make sure data is being reacted to and processed correctly.

Here is an example of a quiz taker unit test:

● Instantiate quiz taker component
● Pass in question and list of answers

○ One case passes in normal questions + answers
○ One case passes in empty question or empty answers
○ One case passes in extremely long questions and answers

● Verify UI is correct in initial state
○ Are all the questions and answer choices displayed?
○ Is anything disabled or items appearing that should be hidden

● Simulate action
○ Call quiz taker component chooseAnswer() method
○ Call chooseAnswer() multiple times on different answers
○ Call submitAnswer() before chooseAnswer()

● Verify that the UI is correct after action
○ Check that the styling of a selected answer choice is changed
○ Check that other answers aren’t marked as correct
○ Make sure the correct answer is still hidden until submitted

● Verify the internal output is correct
○ Did the component properly output a finished signal?
○ Did the component properly score the quiz?

The primary goal here is to ensure that the basic view items and component’s logic is solid.

Server
Our tool of choice will be JUnit.

We will write unit tests for all of our various models, controllers, services, and helper classes. Our
models include items like User and Quiz. Controllers include our API groups like the Course API or
User API. Services include things like CourseService that is used to communicate to the database.
Helper classes can be things such as AuthenticationUtil that performs password encryption and
decryption.

Unit testing’s goal is much simpler here. We will simply verify that each class and its methods
produce what we desire.

We will verify that User and Quiz getters and setters return the correct items. All helper classes will
act as calculators where we will pass data and expect a complete answer. In the case of an
AuthenticationUtil, we will pass in various password strings and verify the hash output is correct.

Controller testing is a little trickier. Our controllers will be tested to make sure we get the correct
data and format. This will require mocking out any service calls that are made. In unit testing, we
are not concerned that a database writes the correct data or the service properly gets data from
storage. Rather we care more generally that a service call was made at all and that we output the
correct data in its correct form.

4.2 INTERFACE TESTING

Interfaces are heavily involved in our system. However, by nature of a software system, unit tests
and integration tests provide very comprehensive coverage of this indirectly.

Our client interface tests involve child components passing data to each other which are covered in
integration tests. Any client-server communication is both mocked and tested live in integration
tests. Puppeteer and Jest drive the client interface interactions.

On the server side, the main interface interactions are between the controllers, services, and
database. The controller is responsible for taking in requests and services for communicating with
the database. In the unit tests, we solely care that the controllers and services give us the correct
output and format of data. In interface tests, our tests will closely resemble the unit tests. The
difference is that service calls will not be mocked in the controller to service relation and database
response will not be mocked in the service to database relation. This will require use of the in
memory database for service interface testing.

4.3 INTEGRATION TESTING

Our server and database are the largest critical paths in our system. While the client is responsible
for showing and requesting the correct data, any damage and issues that may be caused from the
client’s request should be properly handled on the server and database. The server needs to reject
bad requests (e.g. bad data, unauthorized) while also ensuring the database remains in a safe state.

As mentioned, the client is its own entity that is free to make requests as it pleases. Any requests
made to the server are not the client’s responsibility in terms of preventing damage. However, the

client is responsible for displaying an experience for the user and should be able to properly display
data and handle any data request errors (i.e. bad requests made to the server).

Server
Integration testing will be crucial and the bulk of our tests on the server. We will test data against
an in-memory H2 database using JUnit.

Integration tests will overlap the existing controller unit tests slightly. While many of them will take
similar forms, these tests will be more concerned about the entire request flow. Rather than directly
calling controller methods, we will be using MockAPI to make calls to the endpoint’s URL (e.g. GET
‘lms.com/api/user/john-doe’). These integration tests will contain a series of requests to test the
various main functions of our app.

Here is an example of some integration tests on Create Courses:

● Make create course request (i.e. POST lms.com/api/course)
○ Send with empty data
○ Send normal course data
○ Send wildcard characters and some blank values

● Verify course request response
○ Verify server returns a 200 on valid data
○ Verify server returns appropriate 4xx code on any bad data

● Verify action completed by sending GET requests (CRITICAL STEP)
○ Get course with the returned ID from the create request

■ Verify all the data is there
○ Send a getAllCourse request to verify a course with bad data wasn’t created

This testing is critical and is the largest telltale of how solid our application is. This should test all
possible requests that the server may receive. The results we receive from this will inform us of any
faulty request handlers or services, database issues, uncaught errors or exceptions, etc.

Client
We will test the client with a combination of Puppeteer and Jest. Puppeteer allows us to simulate
the client in the browser and acts as a user clicking and inputting on rendered buttons.

For our client integration testing, our goal is to demonstrate that all UI components work with data.
We will not use the live server but rather mock the server responses that the client will receive in
this step.

Here is a list of the core interactions that will be tested:

● Login / signup
● Page navigation (go to profile, go to course marketplace)
● View account / edit account
● View course
● View lesson

○ Watch video
○ Take quiz

● View course marketplace
○ Search courses
○ Enroll course

● View course creator studio
○ Upload video
○ Create quiz

● View / create flashcards

These are the main user interactions on our platform and should be tested. Each of the pages /
components involved in these core interactions will have their data mocked out. To ensure the UI is
safe, we will mock not only 200 server responses with various data, but also 400 and 500 to make
sure the UI can properly respond to server errors.

Additionally, these interactions will be strung together for more in depth integration testing. We
may have a test that does the following:

1. Signup for account
2. Navigate to course marketplace
3. Enroll in course
4. View course
5. View lesson 1
6. View lesson 2
7. Take quiz on lesson 2
8. View account and verify progress

The super goal of integration tests is to verify that the core functionality of our application works.
This is super important in terms of regression testing when making changes to a smaller
component that is used in many ways throughout.

4.4 SYSTEM TESTING

Our system is not a hardware device or a smaller component but rather a complete application for
human use. Our main end to end criteria is if a user can perform all the interactions necessary to
use the platform. Puppeteer is the powerhouse of the system testing as it completely simulates the
user experience. It will open a browser, click buttons and type inputs, and view the page from the
same perspective as a user. While small bugs and hiccups can exist in our application, system
testing gives us the confidence that the main purpose is still served.

The system level testing strategy is to ensure that the application works overall for an end user. The
goal is to trust our system is safe when we see that all tests passed. We want confidence that
everything works without having to manually test things once our changes are deployed. All of our
previous tests work together to get us close to this.

Our server unit tests are helpful in determining that we get the correct outputs from inputs. Our
client unit tests are beneficial in determining that our various components (e.g. quiz taker, quiz
controller) properly work under all possible states and inputs.

Our interface tests ensure that the layers of our server can communicate properly with each other.
While unit tests have proven each individual layer works, interface tests show that pieces work
together as a system.

Our integration tests supply major overlap with system testing. For semantics purposes, we isolate
server/database integration tests as a group and all client integration tests as a group. We mock at
least one part of the end to end experience in our integration tests. Our integration tests
demonstrate that both the client and server should work very well together and in all cases. Our
server integration tests prove that a server can supply any data as well as handle errors and bad
requests. Our client integration tests prove that the UI can use data from the server and properly
support the main user interactions. However, they don’t account for the noise and chaos introduced
between actually communicating over the wire.

So while our system tests are backed by all the lower level tests, we can put the final confirmation of
our application by adding end to end tests from the client to a live server. These tests will be
primarily repeats of our client integration tests but against a live server. The smaller pieces (such as
view marketplace, take quiz) can be left to the mock data however larger client integration tests
(such as the sequence described in the client section of 5.3) will be simulated against the server.
Doing so will demonstrate that our deployed application functions while communicating with
HTTP.

4.5 REGRESSION TESTING

Our regression testing is mainly driven by the user experience. While small breaking code changes
are not good, our number one priority is serving a learning platform to the public. If our platform is
fully functional from the user perspective, our system is working successfully.

Here are the following tools we use to verify new changes do not break old functionality:

● Github
○ Using Git for version control and viewing other’s branches and previous work is a

major advantage in controlling any changes. GitHub’s code reviews are a very
useful tool for a developer to point out any questionable changes or future issues
that may arise.

● Semantic versions
○ Versioning our releases plays a large part in finding issues. If a bug or breaking

change manages to avoid our tests, we can track down the cause of this issue
through versioning. We can view when a bug started to occur and find the version
that contains the breaking change.

● CI/CD
○ We benefit greatly from a CI/CD pipeline. Every build will also run all of our tests.

Any tests that fail will fail the build and prevent the changes from being merged
into our master branch.

● Unit/Interface/Integration tests
○ We maintain comprehensive test suites that cover our application. We account for

all server and client interactions that a user may make. Any breaking changes to
our code should have a corresponding test(s) to alert us.

● System testing
○ System testing ensures the application fully works end to end from a user

perspective. This also functions as a smoke test to catch any core functionalities
that were broken that lower level tests couldn’t catch individually.

Our critical features include:

● User authentication
○ Ensure users can sign up, sign in, password change, and verify email address

● Content creation and management
○ Validate creation and retrieval of videos, courses, and study tools
○ Ensure APIs work for content creation and retrieval

● Course enrollment and marketplace
○ Ensure users can browse, search, and enroll in courses
○ Ensure course marketplace displays courses correctly

● Progress tracking
○ Verify progress tracking system accurately records users’ progress within courses

4.6 ACCEPTANCE TESTING

Functional Requirements
User Acceptance Testing

● Alpha/Beta testing
○ For an alpha version, we will let our friends/classmates/family play around with an

initial version of the site while providing feedback
■ We could possibly make a survey to go along with the alpha version to get

more helpful criticism/comments

○ For beta testing, we will have a similar approach to the alpha version, but it will be
more widespread, allowing anyone who wants to give it a try

● For testing our creator studio, we have thought of reaching out to creators on YouTube who
create educational content and have them provide feedback on what could be
improved/fixed

Taking in all of the feedback from these processes should help guide us in ensuring that our
software is doing what is expected. There will probably be multiple versions of alphas and betas as
new features arrive in our product, repeating this process will help find early bugs that allow for the
best possible experience for users.

Non-Functional Requirements
Performance testing idea: Apache JMeter

For non-functional requirements, we will have four main areas to ensure are up to standards.
Performance, reliability, usability, and security.

Performance
● Response Time: ensure that response time averages are fast, plays into scalability below
● Scalability: When user counts rise we need to ensure that our services scale upwards to

allow for fast response time (availability)
Reliability

● Availability: services are available as often as possible, will aim for 95% uptime
● Fault Tolerance: Ensure within our code that we are constantly adding support nets for

errors/exceptions, when something goes wrong we want to have some sort of exception
handling in every situation

Usability
● User Interface: Make sure that all buttons work as intended, links are not dead. Ensure

different screen sizes are usable, as well as browsers.
● Accessibility: Do all that we can to ensure that anyone can use our site regardless of

disadvantages.

Security (discussed more in 5.7)
● Data Encryption
● Authorization and Authentication

4.7 SECURITY TESTING

Security testing is critical in our application as we are storing user information.

Our code linter serves as a form of testing for security. We will use ESLint which performs static
code analysis to find out any major vulnerabilities. Common client vulnerabilities ESLint can help
prevent are XSS and SQL injection.

Server integration tests will include authorization tests to ensure that requests without the correct
permissions will be properly denied access. We also have unit tests to ensure our password
encryption system properly works and outputs expected hashes.

Our server will be deployed on an AWS EC2 instance which provides us security against the
infrastructure of our application. The responsibility of protection against things like DDOS attacks
are managed by AWS. Our data storages will also all be sourced from AWS services thus leaving the
outer protection of our data up to AWS.

4.8 RESULTS

The results of our testing achieve one central goal: ensure our application provides a learning
platform for users. Great software design is something to shoot for however the user’s benefit has
the highest priority.

Our testing is very user focused with the bulk of our critical and the most useful tests come in the
forms of integration and end to end tests. Our testing covers every individual piece from a user’s
perspective. We have a large focus on ensuring any server requests give us the correct output based
on an input. We have a large focus on ensuring the client can handle all types of user inputs, states,
and handle any errors.

Figure 11 represents basic diagrams showing a high level view of our tests. This depicts a better view
of what / how each is being tested.

Our client integration tests as well as systems tests correspond one to one with requirements. Every
action and procedure a user can make will be covered in a test. Software systems are hard to get
correct and have a very dynamic range of input. Manually testing our software on each iteration
becomes more impossible with the more features that are added. Thus by having a complete
coverage of all user interactions, we can ensure our platform remains functional for the user.

5 Implementation
Our preliminary implementation plan for the upcoming semester begins with coming to a group
consensus on certain design decisions. Some of the things we will agree on before the start of
development are a:

● Linter
● API style (API urls, endpoint and controller names)
● Folder structure (page and component organization, global/local styling,

models/api locations)

We will then begin the GitHub repo setup and have our sprint board ready with tasks. We’ll set up
the basic spring + react projects and have the pipeline to AWS built. Since we would have agreed on
the different screens/pages, we can then start with frontend implementation of our designs.

6 Professionalism

6.1 AREAS OF RESPONSIBILITY

Area of
Responsibility

Definition NSPE Canon SE Code

Work
Competence

Perform work of high
quality, integrity,
timeliness, and
professional
competence.

Perform services
only in areas of
their competence;
Avoid deceptive
acts.

Software Engineers must
ensure their products and
modifications meet the highest
professional standards possible.

Financial
Responsibility

Deliver products and
services of realizable
value and at
reasonable costs.

Act for each
employer or client
as faithful agents
or trustees.

Software Engineers should
provide products and services
that bring realizable value.

Communication
Honesty

Report work
truthfully, without
deception, and
understandably to
stakeholders.

Issue public
statements only in
an objective and
truthful manner;
Avoid deceptive
acts.

Software engineers shall act in a
manner that is in the best
interests of their client and
employer. They are expected to
tell the truth, emphasizing clear
and understandable
communication.

Health, Safety,
Well-Being

Minimize risks to
safety, health, and
well-being of
stakeholders.

Hold paramount
the safety, health,
and welfare of the
public.

The SE Code stresses the
importance of keeping people
safe and healthy by ensuring
good management and
reduction of risk.

Property
Ownership

Respect property,
ideas, and
information of
clients and others.

Act for each
employer or client
as faithful agents
or trustees.

The SE Code emphasizes the
importance of respecting others’
property and ideas. Software
Engineers must ensure that
there is a fair agreement
concerning ownership of any
software, processes, research,
writing, or other intellectual
property.

Sustainability Protect environment
and natural resources
locally and globally.

The SE Code emphasizes the
responsibility to protect the
environment. Software
Engineers must identify
environmental issues related to
work projects and approved
projects must not harm the
environment.

Social
Responsibility

Produce products
and services that
benefit society and
communities.

Conduct
themselves
honorably,
responsibly,
ethically, and
lawfully so as to
enhance the
honor, reputation,
and usefulness of
the profession.

Software Engineers should
create things that help society
and communities. Software
engineers shall act consistently
with the public interest. The
ultimate effect of the work
should be to the public good.

1. Work Competence
○ The SE code emphasizes performing work of high quality and integrity, but the

NSPE canon emphasizes performing work only in areas of their competence.
2. Financial Responsibility

○ The SE code focuses on providing services/products at a reasonable cost. It doesn’t
specifically address financial responsibilities like the NSPE canon, which mentions
acting as faithful agents or trustees.

3. Communication Honesty
○ Both the SE code and NSPE canon stress truthful and objective communication.

4. Health, Safety, Well-Being
○ Both the SE code and NSPE canon prioritize the safety and health of the public.

5. Property Ownership
○ Both the SE code and NSPE canon highlight the importance of respecting the

property and information of clients/others and being faithful.
6. Sustainability

○ The SE code explicitly addresses protecting the environment, while the NSPE
canon does not address environmental sustainability.

7. Social Responsibility
○ The NSPE canon however states that engineers conduct themselves honorably for

the good of their profession. The SE code has a broader societal and
community-oriented focus, emphasizing working for the public good.

6.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

1. Work Competence
○ Ensuring high-quality code, system reliability, and meeting project deadlines are

crucial for the success of our project.
○ Team performance: Medium
○ Justification: Our team has thoroughly been planning and designing our learning

management system, but until actual implementation begins, it’s challenging to
assess the competence in execution. We have plans set for ensuring high-quality
code such as required code reviews and testing.

2. Financial Responsibility
○ Financial responsibility is essential for sustainability, as we must consider our use

of AWS services and the need for a cost-effective infrastructure.
○ Team performance: Medium
○ Justification: Our team is considering the project’s architecture and resource

requirements and cost considerations will be factored into the design phase.

3. Communication Honesty
○ Clear communication within our team and transparent communication with users

is essential.
○ Team performance: High
○ Justification: Clear and honest communication has been a priority during the

planning phase. We have open communication to ensure everyone is on the same
page and are committed to maintaining this and a higher level of communication
during the development phase. We will have regular team meetings and keep each
other updated throughout our sprints.

4. Health, Safety, Well-Being
○ While our project is software-based, ensuring data security and user privacy

contributes to the well being of users.
○ Team performance: N/A
○ Justification: Since our project is software-based and doesn’t involve physical

safety/health concerns, this area is not applicable during our planning phase.
5. Property Ownership

○ Respecting intellectual property rights, especially when dealing with others
educational content, is crucial.

○ Team performance: Medium
○ Justification: Our team is constantly considering how to respect intellectual

property rights throughout our planning.
6. Sustainability

○ Choosing AWS services and considering the environmental impact of data storage
aligns with sustainability goals.

○ Team performance: Medium
○ Justification: Sustainability considerations such as the use of AWS services have

been factored into the design of our project. There will be ongoing efforts to
monitor the environmental impact during our development.

7. Social Responsibility
○ We are providing a platform for accessible and personalized education, which

aligns with the societal responsibility of benefiting a broader community (students
and educators).

○ Team performance: High
○ Justification: Our team is committed to developing a site that is clear and easy to

navigate to ensure a positive user experience and be able to provide access to
quality education, customized learning, and efficient learning.

6.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

The most applicable professional responsibility area for our project is “Social Responsibility”. Our
project aims to provide an online learning platform that has quality educational resources and
user-driven study tools accessible in one place. Societal responsibility involves contributing to the
well-being of society and communities. We aim to be a one-stop solution for educational resources,
benefiting students by making their learning more efficient and effective. Our project aligns with
the broader goal of contributing positively to education, and by extension, society.

7 Closing Material

7.1 DISCUSSION

Our project requirements have been met. We have designed a scalable web application that allows
students to find and enroll in courses, view lessons and quiz their comprehension along with access
to study tools. Our UI design is very simple and accessible for students. The server and data model
follow standard software engineering principles. Our application is very scalable due to being
deployed to AWS. We have improved the developer experience with the creation of our CI/CD
pipeline.

7.2 CONCLUSION

We have conducted user experience research on various online learning platforms such as Udemy,
Coursera, and Quizlet to create a better experience on our platform. We have investigated various
database types and technologies to best determine how to model our data and where to store it. We
have followed good software engineering practices with our application architecture, CI/CD
pipeline, and test suite design.

Our overall project goal is very similar to our project statement. Briefly put, our goal is to provide
students a platform that best encourages them to learn and study in various courses. Our
milestones represent our bi-weekly project completion goals.

To ensure the project is completed on time, we must start strong next semester. Our plan of action
is to create the GitHub repository and lay out the foundations of the basic project. We plan to get a
working round trip between the client, server, and databases. We also want to have all our
developer’s local environments ready to go at the start of next semester. This will help reduce
non-technical issues and ensure we are programming off the bat at the start of next semester.

7.4 APPENDICES

7.4.1 Team Contract

Team Name __Learning Management System - Group 46_________________

Team Members:
1) _Nicholas Erickson_______________ 2) __Jennifer Robles_________________
3) ____Sam DeFrancisco ____________ 4) __Brayton Rude__________________
5) _____Nikhil Kuricheti____________ 6) __Naga Vempati_________________
7) _______________________________8) _______________________________

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:
Fridays ~ 1:00 - 5:00 (hybrid)

2. Preferred method of communication updates, reminders, issues, and
scheduling (e.g., e-mail, phone, app, face-to-face): Group Discord server

3. Decision-making policy (e.g., consensus, majority vote): Majority vote

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will
minutes be shared/archived): Scheduled meetings will be posted in the discord
server and any important information from the meeting will be posted afterwards.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team
meetings:
Attendance: Try best to make every meeting on time, letting the team know in
advance of absences, and give your thoughts/opinions.

2. Expected level of responsibility for fulfilling team assignments, timelines, and
deadlines:
Expect teammates to do their share of what we task out. If a teammate struggles,
they should ask for help in advance. If a teammate does not communicate their
struggles or shortcomings, they should be responsible for it.

3. Expected level of communication with other team members:

Respond to discord messages/emails in a reasonably quick time.

4. Expected level of commitment to team decisions and tasks:
Expect teammates to do what they say they will do. If their available effort or
time is low, they should communicate this and the rest of the team should
readjust.

Leadership

1. Leadership roles for each team member (e.g., team organization, client
interaction, individual component design, testing, etc.):

Team org: all members share the same responsibilities. If leaders start to form
naturally that is ok.
Individual Component Design: Try to build what is assigned in tasks. Obviously
ok to get help/collaborate with other team members.

Client Interaction: Team meetings w/ company head to discuss requirements.
Whoever can make it attends.

2. Strategies for supporting and guiding the work of all team members:
Effective and timely communication between team members on discord or
gitlab. Utilize git lab issues and project management features to guide
team tasks and project milestones.

3. Strategies for recognizing the contributions of all team members:
If someone does a good job, let them know. Give shoutouts!

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member
brings to the team.

a. Nicholas: 2 full stack web development internships touching common tech
b. Sam: Built a few websites (fullstack), one internship that was heavily

involved with databases
c. Jennifer: Frontend development experience in job, experience working in

agile scrum team
d. Naga: Have experience working in frontend and backend primarily from

my internship and also from classes.
e. Nikhil: Have experience with frontend development from internship and

classes.
f. Brayton: Full Stack App Development through class projects.

2. Strategies for encouraging and support contributions and ideas from all team
members:

a. Gitlab tasks will be assigned out during starts of sprints
3. Procedures for identifying and resolving collaboration or inclusion issues

(e.g., how will a team member inform the team that the team environment is
obstructing their opportunity or ability to contribute?)

Make issues known early and discuss issues as a group. If necessary, cite
the TA’s as well to join in on the discussion.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:
Create an effective Project Document and approach that covers all aspects of the

final product and satisfies both the client and ISU faculty.
2. Strategies for planning and assigning individual and team work:

Weekly meetings where we will utilize Agile workflow and gitlab issues to plan
out team tasks and work.

3. Strategies for keeping on task:
Weekly meetings where we discuss the progress towards the semester objectives.
As well as consistent open communication between team members, advisors, and
clients via communication paths (Discord, Email, GitLab, Text, etc.).

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team
contract?

Team will communicate with the person that is breaking the contract.
2. What will your team do if the infractions continue?

Will escalate to TA/Professor if needed

a) I participated in formulating the standards, roles, and procedures as stated in this contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.
1) ___Nicholas Erickson_______________________________ DATE _9/8/2023__________
2) ___Naga Vempati__________________________________ DATE _9/8/2023__________
3) __Sam DeFrancisco_________________________________ DATE _9/8/2023__________
4) _Nikhil Kuricheti___________________________________ DATE _9/8/2023__________
5) ___Jennifer Robles__________________________________ DATE _9/8/2023__________
6) _Brayton Rude_____________________________________ DATE _9/8/2023__________
7) ___ DATE __________________
8) ___ DATE __________________

